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1 Problem setting and statement

For these notes, we will denote random vectors using boldface (e.g., x), and particular values of the
corresponding random vector using non-boldface (e.g., x).

Suppose we have a sequence of random variables {xt}, t = 0, . . . , N . At each timestep t, we obtain
information it, and we must take an action ut based on this information. In general, we will allow
for random actions, that is, instead of picking a fixed ut for each possible it, we will specify a
probability density over actions, which we call a policy. This is a function of the form

Kt(ut, it) = Prob(ut = ut | it = it)

This general formulation includes deterministic policies as a special case, which would just be
functions of the form ut = kt(it). Our only assumption is that the information is nested, which
we write informally as i0 ⊆ i1 ⊆ · · · ⊆ iN . Therefore, as time goes on, we do not forget past
information. Our task is to minimize a cost of the form:

J⋆(i0) = minimize
K0,...,KN−1

E

[
N−1∑
k=0

gk(xk,uk) + gN (xN )

∣∣∣∣∣ i0 = i0

]

Where the gt functions are known. Define the value function or optimal cost-to-go as follows.

Vt(it) := minimize
Kt,...,KN−1

E

[
N−1∑
k=t

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it = it

]
(1)

The optimal cost of interest is J⋆(i0) = V0(i0). The principle of optimality states that we can
compute the Vt functions recursively, optimizing over one action at a time.

Theorem 1 (principle of optimality). The value function (1) satisfies the following recursion,
which iterates backward in time starting from t = N :

VN (iN ) = E
[
gN (xN )

∣∣ iN = iN
]

Vt(it) = min
u

E
[
gt(xt,ut) + Vt+1(it+1)

∣∣ it = it,ut = u
]

for t = 0, . . . , N − 1

Moreover, there exists a deterministic policy that achieves the optimal cost. This policy is given
by picking ut as the argmin of the minimization for each t.

The typical case of interest is when each xt+1 only depends on xt and ut. If it = xt (we observe
the state at each timestep), this is called a Markov Decision Process (MDP). If instead, we observe
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some measurement yt of the state, then we call it a Partially Observed Markov Decision Process,
(POMDP). However, the principle of optimality is far more general, and holds even when the states
and actions do not satisfy a Markovian structure.

2 Proof of Theorem 1

Recall the value function defined in Eq. (1). Now define a recursive version as

WN (iN ) := E
[
gN (xN )

∣∣ iN = iN
]

(2a)

Wt(it) := min
u

E
[
gt(xt,ut) +Wt+1(it+1)

∣∣ it = it,ut = u
]

for t = 0, . . . , N − 1 (2b)

Our goal is to prove that Wt(it) = Vt(it) for all t and all it. We will proceed by induction. First,
note that when t = N , there is no minimization at all in Eq. (1) and we immediately obtain
WN (iN ) = VN (iN ) for all iN . Now, suppose that Wk(ik) = Vk(ik) for k = t + 1. We will prove
that it holds for t = k as well. Consider any fixed set of policies {Kt, . . . ,KN−1} and compute the
cost-to-go for this set:

V
Kt:N−1

t (it) = E

[
N−1∑
k=t

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it = it

]

= E

[
gt(xt,ut) +

N−1∑
k=t+1

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it = it

]

= E

[
gt(xt,ut) +E

[
N−1∑
k=t+1

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it+1

] ∣∣∣∣∣ it = it

]
(3a)

= E
[
gt(xt,ut) + V

Kt+1:N−1

t+1 (it+1)
∣∣∣ it = it

]
≥ E [gt(xt,ut) + Vt+1(it+1) | it = it] (3b)
= E [gt(xt,ut) +Wt+1(it+1) | it = it]

= E
[
E [gt(xt,ut) +Wt+1(it+1) | ut, it = it]

∣∣ it = it
]

(3c)

=
∑
u

E [gt(xt,ut) +Wt+1(it+1) | ut = u, it = it]Prob(ut = u | it = it)

=
∑
u

E [gt(xt,ut) +Wt+1(it+1) | ut = u, it = it]Kt(u, it)

≥ min
u

E [gt(xt,ut) +Wt+1(it+1) | ut = u, it = it] (3d)

= Wt(it)

In Eqs. (3a) and (3c), we used the tower rule1, which relies on the fact that it ⊆ it+1. So, for any
fixed Kt, . . . ,KN−1, we have Wt(it) ≤ V

Kt:N−1

t (it). We can make this an equality by considering
the inequalities (3b) and (3d) separately.

• For Eq. (3b), we have equality if we pick Kt+1, . . . ,KN−1 to be the optimal policies for the
cost-to-go from t+1. That is, Kt+1:N−1 = argminKt+1:N−1

V
Kt+1:N−1

t+1 (it+1). By the definition
of Vt+1, this will produce V

Kt+1:N−1

t+1 (it+1) = Vt+1(it+1).

1We have E
[
E[x | y ]

]
= E[x ]. More generally, whenever y ⊆ z, we have E

[
E[x | z ]

∣∣ y ]
= E[x | y ].

2



• For Eq. (3d), since Kt(u, it) is a pdf over the space of actions u, we achieve equality by picking
the deterministic policy ut = kt(it) = argminuE[gt(xt,ut) +Wt+1(it+1) | ut = u, it = it].

Therefore, Wt(it) ≤ V
Kt:N−1

t (it), and there is a particular choice of Kt:N−1 that achieves equality.
Consequently, Vt(it) := minKt:N−1

V
Kt:N−1

t (it) = Wt(it). We also found a deterministic Kt, so if we
use this choice for all t, the entire optimal policy will be deterministic. ■

3 Incorrect proof

The proof of this principle of optimality is more complicated than for the deterministic version.
Let’s see why the deterministic approach does not work here. It is tempting to start with the
definition of Vt and try to split it up:

Vt(it) = minimize
Kt,...,KN−1

E

[
N−1∑
k=t

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it = it

]

= minimize
Kt,...,KN−1

E

[
gt(xt,ut) +

N−1∑
k=t+1

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it = it

]

= minimize
Kt,...,KN−1

E

[
gt(xt,ut) +E

[
N−1∑
k=t+1

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it+1

] ∣∣∣∣∣ it = it

]

= min
Kt

minimize
Kt+1,...,KN−1

E

[
gt(xt,ut) +E

[
N−1∑
k=t+1

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it+1

] ∣∣∣∣∣ it = it

]

Since the gt term only depends on Kt and the inner expectation only depends on Kt+1:N−1, we
would like to split the minimizations and write

Vt(it) = min
Kt

E

[
gt(xt,ut) + minimize

Kt+1,...,KN−1

E

[
N−1∑
k=t+1

gk(xk,uk) + gN (xN )

∣∣∣∣∣ it+1

] ∣∣∣∣∣ it = it

]
= min

Kt

E
[
gt(xt,ut) + Vt+1(it+1)

∣∣ it = it
]

= min
u

E
[
gt(xt,ut) + Vt+1(it+1)

∣∣ it = it,ut = u
]

Unfortunately, this does not work. This is because in order to bring the minimization inside, we need
to swap the order of the expectation and the minimization. We’re effectively claiming that

min
u

E [f(x, u)] = E
[
min
u

f(x, u)
]
.

But this is not true in general! For example, consider f(x, u) = (x−u)2 with x ∼ N (0, 1). Then it’s
easy to check that minuE[f(x, u)] = 1 but E [minu f(x, u)] = 0. In fact, in general, we have

f(x, u) ≥ min
u

f(x, u) (definition of minimum)

=⇒ E[f(x, u)] ≥ E
[
min
u

f(x, u)
]

(take expectation of both sides)

=⇒ min
u

E[f(x, u)] ≥ E
[
min
u

f(x, u)
]

(minimize both sides with respect to u)
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The reason the principle of optimality still holds, even though this proof approach is flawed, is
because the formulation of the problem gives us great flexibility in picking policies. So although
Wt(it)

K ≤ V K
t (it) for any particular choice of policies K, there is a way to choose K so that we

have equality.

4


	Problem setting and statement
	Proof of thm:pop
	Incorrect proof

